Pyrrolizines: natural and synthetic derivatives with diverse biological activities
by
Samir M. El-Moghazy Aly
1
,
Mohamed A. Azim Mohamed
1
,
Ahmed M. Shawky
2
,
Faisal A. Almalki
3
,
Ashraf N. Abdalla
4,5
,
Bahaa G.M. Youssif
6
,
Ahmed H. Abdelazeem
7,8
,
Nashwa, A. Ibrahim
7
and
Ahmed M. Gouda
7,*
1
Pharmaceutical Chemistry Department Faculty of Pharmacy, Cairo University Cairo, Egypt.
2
Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia
3
Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
4
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
5
Department of Pharmacology and Toxicology, Medicinal And Aromatic Plants Research Institute, National Center for Research, Khartoum 2404, Sudan.
The pyrrolizine nucleus is a bicyclic ring system that consists of a pyrrole ring fused to another pyrrolidin ring. It constitutes the basic skeleton in many natural and synthetic compounds with diverse biological activities such as the anti-inflammatory, nootropic, antiemetic, antibacterial, antiviral, anticonvulsant, antiarrhythmic, and anticancer activities. At least two of these derivatives, ketorolac and mitomycin C, have been approved for the treatment of inflammation and cancer, respectively. Licofelone, a dual inhibitor of COX and 5-LOX, was also evaluated in clinical trials for the treatment of osteoarthritis. On the other hand, a large number of the pyrrolizine-based derivatives have displayed anticancer activity against different types of cancer cells. In this review, the pyrrolizine-based derivatives with anticancer activity were classified based on their chemical structure into substituted, fused, and spiro-pyrrolizine. The mechanisms of action of these compounds included alkylation of the DNA, inhibition of COX, or alteration of the permeability of the cytoplasmic membrane in cancer cells. In addition, other pyrrolizines were found to act by inhibiting DNA replication, rRNA, Rac1 kinase, thioredoxin reductase, or oncogenic kinases. The last section of this review also focuses on the reported X-ray crystal structures of these compounds with different proteins. The binding modes and interactions of ketorolac and licofelone were illustrated in this review. To sum up, we anticipate that the data compiled in this review will be useful to researchers in the design of pyrrolizines with potent biological activities.
Aly, S. M. E.; Mohamed, M. A. A.; Shawky, A. M.; Almalki, F. A.; Abdalla, A. N.; Youssif, B. G.; Abdelazeem, A. H.; Ibrahim, N. A.; Gouda, A. M. Pyrrolizines: natural and synthetic derivatives with diverse biological activities. International Journal of Clinical Medical Research, 2024, 2, 38. https://doi.org/10.61466/ijcmr2050003
AMA Style
Aly S M E, Mohamed M A A, Shawky A M, Almalki F A, Abdalla A N, Youssif B G, Abdelazeem A H, Ibrahim N A, Gouda A M. Pyrrolizines: natural and synthetic derivatives with diverse biological activities. International Journal of Clinical Medical Research; 2024, 2(5):38. https://doi.org/10.61466/ijcmr2050003
Chicago/Turabian Style
Aly, Samir M. E.; Mohamed, Mohamed A. A.; Shawky, Ahmed M.; Almalki, Faisal A.; Abdalla, Ashraf N.; Youssif, Bahaa G.; Abdelazeem, Ahmed H.; Ibrahim, Nashwa, A.; Gouda, Ahmed M. 2024. "Pyrrolizines: natural and synthetic derivatives with diverse biological activities" International Journal of Clinical Medical Research 2, no.5:38. https://doi.org/10.61466/ijcmr2050003
APA style
Aly, S. M. E., Mohamed, M. A. A., Shawky, A. M., Almalki, F. A., Abdalla, A. N., Youssif, B. G., Abdelazeem, A. H., Ibrahim, N. A., & Gouda, A. M. (2024). Pyrrolizines: natural and synthetic derivatives with diverse biological activities. International Journal of Clinical Medical Research, 2(5), 38. https://doi.org/10.61466/ijcmr2050003
Article Metrics
Article Access Statistics
References
A. Robin Mattocks, R. Jukes, Recovery of the pyrrolic nucleus of pyrrolizidine alkaloid metabolites from sulphur conjugates in tissues and body fluids, Chem. Biol. Interact. 75 (1990) 225–239. doi:https://doi.org/10.1016/0009-2797(90)90120-C.
E. Vedejs, S. Larsen, F.G. West, Nonstabilized imidate ylides by the desilylation method: a route to the pyrrolizidine alkaloids retronecine and indicine, J. Org. Chem. 50 (1985) 2170–2174. doi:10.1021/jo00212a034.
T. Quiroz, D. Corona, A. Covarruvias, J.G. Avila-Zárraga, M. Romero-Ortega, A practical method for the synthesis of pyrrolizidine, indolizidine and pyrroloazepinolizidine nucleus, Tetrahedron Lett. 48 (2007) 1571–1575. doi:https://doi.org/10.1016/j.tetlet.2007.01.015.
A.M. Gouda, A.H. Abdelazeem, An integrated overview on pyrrolizines as potential anti-inflammatory, analgesic and antipyretic agents, Eur. J. Med. Chem. 114 (2016) 257–292. doi:10.1016/j.ejmech.2016.01.055.
F.A. Almalki, A.N. Abdalla, A.M. Shawky, M.A. El Hassab, A.M. Gouda, In Silico Approach Using Free Software to Optimize the Antiproliferative Activity and Predict the Potential Mechanism of Action of Pyrrolizine-Based Schiff Bases, Molecules. 26 (2021). doi:10.3390/molecules26134002.
S.M. El-Moghazy, M.A.A. Mohamed, A.E. Farag, A.M. Gouda, Synthesis and antitumor activity of some 5H-pyrrolizine, pyrimido[5,4-a]pyrrolizine, pyrimido[4,5b]pyrrolizine derivatives, Saudi Pharm. J. 17 (2009) 3–18.
M.T. Elsaady, A.M. Gouda, F.H. Edrees, N.M.A. Gawad, Design, synthesis and biological evaluation of some novel Schiff base derivatives as potential anticancer agents, J. Chem. Pharm. Res. 8 (2016) 273–282.
S. Tries, W. Neupert, S. Laufer, The mechanism of action of the new antiinflammatory compound ML3000: inhibition of 5-LOX and COX-1/2., Inflamm. Res. Off. J. Eur. Histamine Res. Soc. ... [et Al.]. 51 (2002) 135–143. doi:10.1007/pl00000285.
S. Laufer, H.G. Striegel, K. Neher, P. Zechmeister, C. Donat, K. Stolingwa, S. Baur, S. Tries, T. Kammermeier, G. Dannhardt, W. Kiefer, Synthesis and evaluation of a novel series of pyrrolizine derivatives as dual cyclooxygenase-1 and 5-lipoxygenase inhibitors., Arch. Pharm. (Weinheim). 330 (1997) 307–312. doi:10.1002/ardp.19973300908.
L.D. Waterbury, D. Silliman, T. Jolas, Comparison of cyclooxygenase inhibitory activity and ocular anti-inflammatory effects of ketorolac tromethamine and bromfenac sodium., Curr. Med. Res. Opin. 22 (2006) 1133–1140. doi:10.1185/030079906X112471.
K. Scheuer, A. Rostock, R. Bartsch, W.E. Müller, Piracetam improves cognitive performance by restoring neurochemical deficits of the aged rat brain., Pharmacopsychiatry. 32 Suppl 1 (1999) 10–16. doi:10.1055/s-2007-979231.
E.W. Thomas, R.H. Rynbrandt, D.C. Zimmermann, L.T. Bell, C.R. Muchmore, E.W. Yankee, Reaction of novel imide reducing reagents with pyrrolizidinediones, J. Org. Chem. 54 (1989) 4535–4543. doi:10.1021/jo00280a018.
A.H. Gouliaev, A. Senning, Piracetam and other structurally related nootropics., Brain Res. Brain Res. Rev. 19 (1994) 180–222. doi:10.1016/0165-0173(94)90011-6.
R. Verloes, A.-M. Scotto, J. Gobert, E. Wülfert, Effects of nootropic drugs in a scopolamine-induced amnesia model in mice, Psychopharmacology (Berl). 95 (1988) 226–230. doi:10.1007/BF00174514.
D.P. Becker, D.L. Flynn, A.E. Moormann, R. Nosal, C.I. Villamil, R. Loeffler, G.W. Gullikson, C. Moummi, D.-C. Yang, Pyrrolizidine esters and amides as 5-HT4 receptor agonists and antagonists., J. Med. Chem. 49 (2006) 1125–1139. doi:10.1021/jm0509501.
N. Li, S. Tan, J. Cui, N. Guo, W. Wang, Y. Zu, S. Jin, X. Xu, Q. Liu, Y. Fu, PA-1, a novel synthesized pyrrolizidine alkaloid, inhibits the growth of Escherichia coli and Staphylococcus aureus by damaging the cell membrane, J. Antibiot. (Tokyo). 67 (2014) 689–696. doi:10.1038/ja.2014.49.
B. Singh, P.M. Sahu, S.C. Jain, S. Singh, Antineoplastic and Antiviral Screening of Pyrrolizidine Alkaloids from Heliotropium subulatum, Pharm. Biol. 40 (2002) 581–586. doi:10.1076/phbi.40.8.581.14659.
T. Kopp, M. Abdel-Tawab, B. Mizaikoff, Extracting and Analyzing Pyrrolizidine Alkaloids in Medicinal Plants: A Review., Toxins (Basel). 12 (2020). doi:10.3390/toxins12050320.
D.L. Taylor, R. Nash, L.E. Fellows, M.S. Kang, A.S. Tyms, Naturally Occurring Pyrrolizidines: Inhibition of α-Glucosidase 1 and Anti-HIV Activity of One Stereoisomer, Antivir. Chem. Chemother. 3 (1992) 273–277. doi:10.1177/095632029200300504.
S.E. Abbas, F.M. Awadallah, N.A. Ibrahim, A.M. Gouda, B.A. Shehata, Design, synthesis and preliminary evaluation of some novel 1,4]diazepino [5,6-b]pyrrolizine and 6-(2-oxopyrrolidino)-1Hpyrrolizine derivatives as anticonvulsant agents, Med. Chem. Res. 20 (2011) 1015–1023. doi:10.1007/s00044-010-9429-8.
Y. Nakashima, S. Sugiyama, J. Shindoh, F. Taki, K. Takagi, T. Satake, T. Ozawa, Effects of sodium channel blockers on electrical field stimulation-induced guinea-pig tracheal smooth muscle contraction., Arch. Int. Pharmacodyn. Ther. 306 (1990) 130–138.
S. Sugiyama, Y. Hanaki, T. Ogawa, N. Hieda, K. Taki, T. Ozawa, The effects of SUN 1165, a novel sodium channel blocker, on ischemia-induced mitochondrial dysfunction and leakage of lysosomal enzymes in canine hearts., Biochem. Biophys. Res. Commun. 157 (1988) 433–439. doi:10.1016/s0006-291x(88)80267-5.
N.K. Narayanan, D. Nargi, M. Attur, S.B. Abramson, B.A. Narayanan, Anticancer effects of licofelone (ML-3000) in prostate cancer cells., Anticancer Res. 27 (2007) 2393–2402.
W. Liu, J. Zhou, Y. Liu, H. Liu, K. Bensdorf, C. Guo, R. Gust, Licofelone-nitric oxide donors as anticancer agents., Arch. Pharm. (Weinheim). 344 (2011) 487–493. doi:10.1002/ardp.201000397.
Y. Guo, S.R. Kenney, L. Cook, S.F. Adams, T. Rutledge, E. Romero, T.I. Oprea, L.A. Sklar, E. Bedrick, C.L. Wiggins, H. Kang, L. Lomo, C.Y. Muller, A. Wandinger-Ness, L.G. Hudson, A Novel Pharmacologic Activity of Ketorolac for Therapeutic Benefit in Ovarian Cancer Patients., Clin. Cancer Res. an Off. J. Am. Assoc. Cancer Res. 21 (2015) 5064–5072. doi:10.1158/1078-0432.CCR-15-0461.
B.C.Q. Nguyen, H. Takahashi, Y. Uto, M.D. Shahinozzaman, S. Tawata, H. Maruta, 1,2,3-Triazolyl ester of Ketorolac: A “Click Chemistry”-based highly potent PAK1-blocking cancer-killer., Eur. J. Med. Chem. 126 (2017) 270–276. doi:10.1016/j.ejmech.2016.11.038.
M. Atefinezhad, A. Moghadamnia, S.P. Eftekhar, A.A. Moghadamnia, S. Kazemi, Effect of Ketorolac on Pharmacokinetics and Pharmacodynamics of 5-Fluorouracil: In Vivo and In Vitro Study., J. Trop. Med. 2022 (2022) 5267861. doi:10.1155/2022/5267861.
D.D. Buechter, D.E. Thurston, Studies on the Pyrrolizidine Antitumor Agent, Clazamycin: Interconversion of Clazamycins A and B, J. Nat. Prod. 50 (1987) 360–367. doi:10.1021/np50051a004.
M. Hori, K. Naito, N. Sakata, Y. Uehara, H. Umezawa, Inhibition of DNA replication and membrane transport of some nutrients by clazamycin in Escherichia coli., J. Antibiot. (Tokyo). 37 (1984) 260–266. doi:10.7164/antibiotics.37.260.
S.S. Kusuma, K. Tanneeru, S. Didla, B.N. Devendra, P. Kiranmayi, Antineoplastic activity of monocrotaline against hepatocellular carcinoma., Anticancer. Agents Med. Chem. 14 (2014) 1237–1248. doi:10.2174/1871520614666140715085907.
D. Ladurée, J.C. Lancelot, M. Robba, E. Chenu, G. Mathé, Synthesis and evaluation of antileukemic activity of 5-thienyl- or 5-(2-furyl)-2,3-dihydro-6,7-bis(hydroxymethyl)-1H-pyrrolizine bis(alkylcarbamates) and derivatives., J. Med. Chem. 32 (1989) 456–461. doi:10.1021/jm00122a028.
K.M. Attalah, A.N. Abdalla, A. Aslam, M. Ahmed, M.A.S. Abourehab, N.A. ElSawy, A.M. Gouda, Ethyl benzoate bearing pyrrolizine/indolizine moieties: Design, synthesis and biological evaluation of anti-inflammatory and cytotoxic activities., Bioorg. Chem. 94 (2020) 103371. doi:10.1016/j.bioorg.2019.103371.
A.M. Shawky, M.A.S. Abourehab, A.N. Abdalla, A.M. Gouda, Optimization of pyrrolizine-based Schiff bases with 4-thiazolidinone motif: Design, synthesis and investigation of cytotoxicity and anti-inflammatory potency, Eur. J. Med. Chem. 185 (2020). doi:10.1016/j.ejmech.2019.111780.
M.M. Hanna, N.M. Abdelgawad, N.A. Ibrahim, A.B. Mohammed, Synthesis and antitumor evaluation of some novel pyrrolizine derivatives, Med. Chem. Res. 21 (2012) 2349–2362. doi:10.1007/s00044-011-9761-7.
A.F. Mahmoud, M.H. Aboumanei, S. Abdelhalim, Y.A. Hassan, I.T. Ibrahim, Radioiodination and in vivo assessment of the potential of newly synthesized pyrrolizine-5-carboxamides derivative in tumor model, Appl. Radiat. Isot. 166 (2020) 109369. doi:https://doi.org/10.1016/j.apradiso.2020.109369.
A.M. Shawky, A.N. Abdalla, N.A. Ibrahim, M.A.S. Abourehab, A.M. Gouda, Discovery of new pyrimidopyrrolizine/indolizine-based derivatives as P-glycoprotein inhibitors: Design, synthesis, cytotoxicity, and MDR reversal activities, Eur. J. Med. Chem. 218 (2021) 113403. doi:https://doi.org/10.1016/j.ejmech.2021.113403.
T. HATA, T. HOSHI, K. KANAMORI, A. MATSUMAE, Y. SANO, T. SHIMA, R. SUGAWARA, Mitomycin, a new antibiotic from Streptomyces. I., J. Antibiot. (Tokyo). 9 (1956) 141–146.
L. Kabiri, S. Irani, A.R. Nikpoor, J. Tavakkol Afshari, Inhibitory and Apoptotic Effects of Mannan-Mitomycin C Conjugate Against Transitional Cell Carcinoma and Normal Mouse Fibroblasts., Reports Biochem. Mol. Biol. 8 (2019) 63–71.
J. Verweij, H.M. Pinedo, Mitomycin C: mechanism of action, usefulness and limitations., Anticancer. Drugs. 1 (1990) 5–13.
M.M. Paz, X. Zhang, J. Lu, A. Holmgren, A New Mechanism of Action for the Anticancer Drug Mitomycin C: Mechanism-Based Inhibition of Thioredoxin Reductase, Chem. Res. Toxicol. 25 (2012) 1502–1511. doi:10.1021/tx3002065.
A. Perzyna, F. Klupsch, R. Houssin, N. Pommery, A. Lemoine, J.-P. Hénichart, New benzo[5,6]pyrrolizino[1,2-b]quinolines as cytotoxic agents, Bioorg. Med. Chem. Lett. 14 (2004) 2363–2365. doi:https://doi.org/10.1016/j.bmcl.2004.01.097.
N.S. Zimnitskiy, A.Y. Barkov, M. V Ulitko, I.B. Kutyashev, V.Y. Korotaev, V.Y. Sosnovskikh, An expedient synthesis of novel spiro[indenoquinoxaline-pyrrolizidine]-pyrazole conjugates with anticancer activity from 1,5-diarylpent-4-ene-1,3-diones through the 1,3-dipolar cycloaddition/cyclocondensation sequence, New J. Chem. 44 (2020) 16185–16199. doi:10.1039/D0NJ02817G.
A.I. Almansour, R.S. Kumar, F. Beevi, A.N. Shirazi, H. Osman, R. Ismail, T.S. Choon, B. Sullivan, K. McCaffrey, A. Nahhas, K. Parang, M.A. Ali, Facile, Regio- and Diastereoselective Synthesis of Spiro-Pyrrolidine and Pyrrolizine Derivatives and Evaluation of Their Antiproliferative Activities, Molecules. 19 (2014) 10033–10055. doi:10.3390/molecules190710033.
T.P. Singh, N., Jabeen, T., Sharma, S., Bhushan, A., Singh, Crystal structure of the complex of a group IIA phospholipase A2 with a synthetic anti-inflammatory agent licofelone at 1.9A resolution, (2005). doi:https://doi.org/10.2210/pdb1ZYX/pdb.
T.P. Gautam, L., Shukla, P.K., Sinha, M., Kaur, P., Sharma, S., Singh, Crystal Structure of C-lobe of Bovine lactoferrin Complexed with ketorolac at 1.68 A Resolution, (n.d.). doi:https://doi.org/10.2210/pdb4GRK/pdb.
T.P. Shukla, P.K., Gautam, L., Sinha, M., Kaur, P., Sharma, S., Singh, Crystal structure of C-lobe of bovine lactoferrin complexed with licofelone at 1.88 A resolution, (2012). doi:https://doi.org/10.2210/pdb4G8H/pdb.
R. Patil, A. Laguerre, J. Wielens, S.J. Headey, M.L. Williams, M.L.R. Hughes, B. Mohanty, C.J.H. Porter, M.J. Scanlon, Characterization of Two Distinct Modes of Drug Binding to Human Intestinal Fatty Acid Binding Protein, ACS Chem. Biol. 9 (2014) 2526–2534. doi:10.1021/cb5005178.
M. Sastry, R. Fiala, R. Lipman, M. Tomasz, D.J. Patel, Solution structure of the monoalkylated mitomycin C-DNA complex., J. Mol. Biol. 247 (1995) 338–359. doi:10.1006/jmbi.1994.0143.
N. Danshiitsoodol, C.A. de Pinho, Y. Matoba, T. Kumagai, M. Sugiyama, The mitomycin C (MMC)-binding protein from MMC-producing microorganisms protects from the lethal effect of bleomycin: crystallographic analysis to elucidate the binding mode of the antibiotic to the protein., J. Mol. Biol. 360 (2006) 398–408. doi:10.1016/j.jmb.2006.05.017.
T.W. Martin, Z. Dauter, Y. Devedjiev, P. Sheffield, F. Jelen, M. He, D.H. Sherman, J. Otlewski, Z.S. Derewenda, U. Derewenda, Molecular basis of mitomycin C resistance in streptomyces: structure and function of the MRD protein., Structure. 10 (2002) 933–942. doi:10.1016/s0969-2126(02)00778-5.
S. Singh, A. Chang, R.D. Goff, C.A. Bingman, S. Grüschow, D.H. Sherman, G.N.J. Phillips, J.S. Thorson, Structural characterization of the mitomycin 7-O-methyltransferase., Proteins. 79 (2011) 2181–2188. doi:10.1002/prot.23040.
C. Kubitza, A. Faust, M. Gutt, L. Gäth, D. Ober, A.J. Scheidig, Crystal structure of pyrrolizidine alkaloid N-oxygenase from the grasshopper Zonocerus variegatus., Acta Crystallogr. Sect. D, Struct. Biol. 74 (2018) 422–432. doi:10.1107/S2059798318003510.
Dassault systems BIOVIA. Discovery Studio Visualizer, v16.1.0.15350; Dassault Systems: San Diego, CA, USA, (2016).
A.M. Shawky, F.A. Almalki, A.N. Abdalla, B.G.M. Youssif, M.M. Abdel-Fattah, F. Hersi, H.A.M. El-Sherief, N. Ibrahim A., A.M. Gouda, Discovery and optimization of 2,3-diaryl-1,3-thiazolidin-4-one-based derivatives as potent and selective cytotoxic agents with anti-inflammatory activity, Eur. J. Med. Chem. 259 (2023) 115712. doi:https://doi.org/10.1016/j.ejmech.2023.115712.
F.A. Almalki, A.M. Shawky, A.N. Abdalla, A.M. Gouda, Icotinib, Almonertinib, and Olmutinib: A 2D Similarity/Docking-Based Study to Predict the Potential Binding Modes and Interactions into EGFR, Mol. . 26 (2021). doi:10.3390/molecules26216423.
A.M. Shawky, F.A. Almalki, H.A. Alzahrani, A.N. Abdalla, B.G.M. Youssif, N.A. Ibrahim, M. Gamal, H.A.M. El-Sherief, M.M. Abdel-Fattah, A.A. Hefny, A.H. Abdelazeem, A.M. Gouda, Covalent small-molecule inhibitors of SARS-CoV-2 Mpro: Insights into their design, classification, biological activity, and binding interactions, Eur. J. Med. Chem. 277 (2024) 116704. doi:https://doi.org/10.1016/j.ejmech.2024.116704.
G.Y. Sun, P.B. Shelat, M.B. Jensen, Y. He, A.Y. Sun, A. Simonyi, Phospholipases A2 and inflammatory responses in the central nervous system., Neuromolecular Med. 12 (2010) 133–148. doi:10.1007/s12017-009-8092-z.