Open Access Journal Article

Optical coherence tomography with the best deep properties for finding age-related macular degeneration

by Jakub Dominik 1,*
1
Na Homolce Hospital, Roentgenova 37, 150 00 Praha 5, Czechia
*
Author to whom correspondence should be addressed.
IJCMR  2025 3(3):58; https://doi.org/10.61466/ijcmr3030003
Received: 4 February 2025 / Accepted: 20 April 2025 / Published Online: 23 April 2025

Abstract

Background

An ocular ailment impacts the entirety of sensory functioning, and an undetected and untreated ocular ailment might result in visual impairment. The objective of this study was to create an automated system for detecting age-related macular degeneration (ARMD) using deep-learning (DL) method that combines optimal deep features selected using the arithmetic optimizer (AO).

Methods

The main stages of the proposed scheme include; image collection from the chosen dataset and resizing, feature extraction using the DL scheme, feature optimization with AO and serial features fusion, and bi-level data classification and five-fold cross validation. The performance of the developed DL system is verified using conventional-, optimal-, and fused-features and the importance of these methods are established based on the chosen performance metrics.

Results

This study is executed using 1200 numbers of optical coherence tomography images of Normal/ARMD class and the scheme helps in achieving accuracy of >90% and >91% with conventional- and optimal features. Further, the fused-features based classification provided an accuracy of >99% with the support vector machin.

Conclusions

The achieved results of this study confirm the importance of the developed procedure on the examination of retinal optical coherence tomography images.


Copyright: © 2025 by Dominik. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (Creative Commons Attribution 4.0 International License). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Share and Cite

ACS Style
Dominik, J. Optical coherence tomography with the best deep properties for finding age-related macular degeneration. International Journal of Clinical Medical Research, 2025, 3, 58. doi:10.61466/ijcmr3030003
AMA Style
Dominik J. Optical coherence tomography with the best deep properties for finding age-related macular degeneration. International Journal of Clinical Medical Research; 2025, 3(3):58. doi:10.61466/ijcmr3030003
Chicago/Turabian Style
Dominik, Jakub 2025. "Optical coherence tomography with the best deep properties for finding age-related macular degeneration" International Journal of Clinical Medical Research 3, no.3:58. doi:10.61466/ijcmr3030003

Article Metrics

Article Access Statistics

References

  1. Stoumpos, A. I., Kitsios, F., & Talias, M. A. (2023). Digital transformation in healthcare: technology acceptance and its applications. International journal of environmental research and public health 20(4), 3407.
  2. Sarkar, A., Sodha, S. J., Junnuthula, V., Kolimi, P., & Dyawanapelly, S. (2022). Novel and investigational therapies for wet and dry age-related macular degeneration. Drug Discovery Today 27(8), 2322-2332.
  3. Acharya, U. R., Hagiwara, Y., Koh, J. E., Tan, J. H., Bhandary, S. V., Rao, A. K., & Raghavendra, U. (2017). Automated screening tool for dry and wet age-related macular degeneration (ARMD) using pyramid of histogram of oriented gradients (PHOG) and nonlinear features. Journal of Computational Science, 20, 41-51.
  4. Hirabayashi, K., Hannah, J. Y., Wakatsuki, Y., Marion, K. M., Wykoff, C. C., & Sadda, S. R. (2023). OCT risk factors for development of atrophy in eyes with intermediate age-related macular degeneration. Ophthalmology Retina, 7(3), 253-260.
  5. Ricardi, F., Oakley, J., Russakoff, D., Boscia, G., Caselgrandi, P., Gelormini, F., ... & Borrelli, E. (2024). Validation of a deep learning model for automatic detection and quantification of five OCT critical retinal features associated with neovascular age-related macular degeneration. British Journal of Ophthalmology.
  6. Mikhail Kulyabin, Aleksei Zhdanov, Anastasia Nikiforova, Andrey Stepichev, Anna Kuznetsova, Vasilii Borisov, Mikhail Ronkin, Alexander Bogachev, Sergey Korotkich. (2023). OCTDL: Optical Coherence Tomography Dataset for Image-Based Deep Learning Methods. IEEE Dataport. https://dx.doi.org/10.21227/fpvs-8n55
  7. https://www.kaggle.com/datasets/paultimothymooney/kermany2018
  8. Umer, M. J., Sharif, M., Raza, M., & Kadry, S. (2023). A deep feature fusion and selection‐based retinal eye disease detection from oct images. Expert Systems, 40(6), e13232.
  9. Kadry, S., Crespo, R. G., Herrera-Viedma, E., Krishnamoorthy, S., & Rajinikanth, V. (2023). Deep and handcrafted feature supported diabetic retinopathy detection: A study. Procedia Computer Science, 218, 2675-2683.
  10. Chen, M., Jin, K., Yan, Y., Liu, X., Huang, X., Gao, Z., ... & Ye, J. (2022). Automated diagnosis of age‐related macular degeneration using multi‐modal vertical plane feature fusion via deep learning. Medical Physics, 49(4), 2324-2333.
  11. Kawasaki, R., Yasuda, M., Song, S. J., Chen, S. J., Jonas, J. B., Wang, J. J., ... & Wong, T. Y. (2010). The prevalence of age-related macular degeneration in Asians: a systematic review and meta-analysis. Ophthalmology, 117(5), 921-927.
  12. Chakravarthy, U., Wong, T. Y., Fletcher, A., Piault, E., Evans, C., Zlateva, G., ... & Mitchell, P. (2010). Clinical risk factors for age-related macular degeneration: a systematic review and meta-analysis. BMC ophthalmology, 10, 1-13.
  13. Burlina, P., Freund, D. E., Joshi, N., Wolfson, Y., & Bressler, N. M. (2016, April). Detection of age-related macular degeneration via deep learning. In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) (pp. 184-188). IEEE.
  14. González‐Gonzalo, C., Sánchez‐Gutiérrez, V., Hernández‐Martínez, P., Contreras, I., Lechanteur, Y. T., Domanian, A., ... & Sánchez, C. I. (2020). Evaluation of a deep learning system for the joint automated detection of diabetic retinopathy and age‐related macular degeneration. Acta ophthalmologica, 98(4), 368-377.
  15. Xie, J., Chen, Q., Yu, J., Zhou, H., He, J., Wang, W., ... & Xu, X. (2020). Morphologic features of myopic choroidal neovascularization in pathologic myopia on swept-source optical coherence tomography. Frontiers in Medicine, 7, 615902.
  16. Rim, T. H., Lee, A. Y., Ting, D. S., Teo, K., Betzler, B. K., Teo, Z. L., ... & Cheung, C. M. G. (2021). Detection of features associated with neovascular age-related macular degeneration in ethnically distinct data sets by an optical coherence tomography: trained deep learning algorithm. British Journal of Ophthalmology, 105(8), 1133-1139.
  17. Kadry, S., Rajinikanth, V., González Crespo, R., & Verdú, E. (2022). Automated detection of age-related macular degeneration using a pre-trained deep-learning scheme. The Journal of Supercomputing, 78(5), 7321-7340.
  18. Shrestha, A., & Mahmood, A. (2019). Review of deep learning algorithms and architectures. IEEE access, 7, 53040-53065.
  19. Khamparia, A., & Singh, K. M. (2019). A systematic review on deep learning architectures and applications. Expert Systems, 36(3), e12400.
  20. Carrington, A. M., Manuel, D. G., Fieguth, P. W., Ramsay, T., Osmani, V., Wernly, B., ... & Holzinger, A. (2021). Deep ROC analysis and AUC as balanced average accuracy to improve model selection, understanding and interpretation. arXiv preprint arXiv:2103.11357.
  21. Moraes, G., Fu, D. J., Wilson, M., Khalid, H., Wagner, S. K., Korot, E., ... & Chopra, R. (2021). Quantitative analysis of OCT for neovascular age-related macular degeneration using deep learning. Ophthalmology, 128(5), 693-705.
  22. Lee, C. S., Baughman, D. M., & Lee, A. Y. (2017). Deep learning is effective for classifying normal versus age-related macular degeneration OCT images. Ophthalmology Retina, 1(4), 322-327.
  23. Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021). The arithmetic optimization algorithm. Computer methods in applied mechanics and engineering, 376, 113609.
  24. Xu, H., Zeng, W., Zeng, X., & Yen, G. G. (2018). An evolutionary algorithm based on Minkowski distance for many-objective optimization. IEEE transactions on cybernetics, 49(11), 3968-3979.
  25. Saeedi, A., Moridani, M. K., & Azizi, A. (2021). An innovative method for cardiovascular disease detection based on nonlinear geometric features and feature reduction combination. Intelligent Decision Technologies, 15(1), 45-57.
  26. Kansal, V., Armstrong, J. J., Pintwala, R., & Hutnik, C. (2018). Optical coherence tomography for glaucoma diagnosis: an evidence based meta-analysis. PloS one, 13(1), e0190621.