Open Access Short Communication

Myasthenia gravis treatment

by Samnang Khim 1,*
1
Russian Hospital, GWV3+H4F, Yothapol Khemarak Phoumin Blvd (271), Phnom Penh, Cambodia
*
Author to whom correspondence should be addressed.
IJCMR  2025 3(2):53; https://doi.org/10.61466/ijcmr3020003
Received: 7 January 2025 / Accepted: 19 February 2025 / Published Online: 19 February 2025

Abstract

Myasthenia gravis” has its origins in Greek. The terms denote muscle weakening (myasthenia) and heaviness (gravis). Myasthenia gravis (myasthenia gravis) is an autoimmune disorder marked by muscle weakness that exacerbates with activity, predominantly impacting the oculobulbar muscles and principally targeting postsynaptic nicotinic acetylcholine receptors. 1 This condition, characterized by a significantly high mortality rate due to respiratory failure, holds unique significance among neuromuscular disorders and within the broader field of neurology, as patients can enjoy perfectly normal lives with appropriate treatment. The prevalence of the condition in women is bimodal, with the highest incidence occurring between the ages of 20-30 and above 50 years. In contrast to males above the age of 50. The disease's most notable characteristic is muscle weakness, which exacerbates with tiredness and is at least partially alleviated by rest. Patients indicate improvement in the morning, with symptoms exacerbating in the evening or when fatigued 2 The manifestation of disease progresses with periods of remission and exacerbation. Remissions can last for durations ranging from a few days to several years.


Copyright: © 2025 by Khim. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (Creative Commons Attribution 4.0 International License). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Share and Cite

ACS Style
Khim, S. Myasthenia gravis treatment. International Journal of Clinical Medical Research, 2025, 3, 53. doi:10.61466/ijcmr3020003
AMA Style
Khim S. Myasthenia gravis treatment. International Journal of Clinical Medical Research; 2025, 3(2):53. doi:10.61466/ijcmr3020003
Chicago/Turabian Style
Khim, Samnang 2025. "Myasthenia gravis treatment" International Journal of Clinical Medical Research 3, no.2:53. doi:10.61466/ijcmr3020003

Article Metrics

Article Access Statistics

References

  1. Ciafaloni, E., Myasthenia Gravis and Congenital Myasthenic Syndromes. CONTINUUM: Lifelong Learning in Neurology, 2019. 25(6): p. 1767-1784.
  2. Binu, A., Kumar, S.S., Padma, U.D., et al., Pathophysiological basis in the management of myasthenia gravis: a mini review. Inflammopharmacology, 2022. 30(1): p. 61-71.
  3. Keesey, J.C., Contemporary opinions about Mary Walker. Neurology, 1998. 51(5): p. 1433-1439.
  4. Remen, L., Zur Pathogenese und Therapie der Myasthenia gravis pseudoparalytica. Deutsche Zeitschrift für Nervenheilkunde, 1932. 128(1): p. 66-78.
  5. Bell, E.T., TUMORS OF THE THYMUS IN MYASTHENIA GRAVIS. The Journal of Nervous and Mental Disease, 1917. 45(2): p. 130-143.
  6. Gronseth, G.S. and Barohn, R.J., Practice parameter: Thymectomy for autoimmune myasthenia. 2000.
  7. Pinching, A.J., Peters, D.K., and Newsom Davis, J., Remission of myasthenia gravis following plasma-exchange. The Lancet, 1976. 308(8000): p. 1373-1376.
  8. Mehndiratta, M.M., Pandey, S., and Kuntzer, T., Acetylcholinesterase inhibitor treatment for myasthenia gravis. Cochrane Database of Systematic Reviews, 2014(10).
  9. Lipka, A.F., Vrinten, C., van Zwet, E.W., et al., Ephedrine treatment for autoimmune myasthenia gravis. Neuromuscular Disorders, 2017. 27(3): p. 259-265.
  10. Evoli, A., Alboini, P.E., Damato, V., et al., 3,4-Diaminopyridine may improve myasthenia gravis with M<span class="smallcaps smallerCapital">u</span>SK antibodies. Neurology, 2016. 86(11): p. 1070-1071.
  11. Bae, J.S., Go, S.M., and Kim, B.J., Clinical predictors of steroid-induced exacerbation in myasthenia gravis. Journal of Clinical Neuroscience, 2006. 13(10): p. 1006-1010.
  12. Maltzman, J.S. and Koretzky, G.A., Azathioprine: old drug, new actions. The Journal of Clinical Investigation, 2003. 111(8): p. 1122-1124.
  13. Witte, A.S., Cornblath, D.R., Parry, G.J., et al., Azathioprine in the treatment of myasthenia gravis. Annals of Neurology, 1984. 15(6): p. 602-605.
  14. Meriggioli, M.N., Rowin, J., Richman, J.G., et al., Mycophenolate Mofetil for Myasthenia Gravis A Double-Blind, Placebo-Controlled Pilot Study. Annals of the New York Academy of Sciences, 2003. 998(1): p. 494-499.
  15. Villarroel, M.C., Hidalgo, M., and Jimeno, A., Mycophenolate mofetil: An update. Drugs Today (Barc), 2009. 45(7): p. 521-32.
  16. Pasnoor, M., He, J., Herbelin, L., et al., A randomized controlled trial of methotrexate for patients with generalized myasthenia gravis. Neurology, 2016. 87(1): p. 57-64.
  17. Kanai, T., Uzawa, A., Kawaguchi, N., et al., Adequate tacrolimus concentration for myasthenia gravis treatment. European Journal of Neurology, 2017. 24(2): p. 270-275.
  18. Azzi, J.R., Sayegh, M.H., and Mallat, S.G., Calcineurin Inhibitors: 40 Years Later, Can’t Live Without …. The Journal of Immunology, 2013. 191(12): p. 5785-5791.
  19. Tindall, R.S., Phillips, J.T., Rollins, J.A., et al., A clinical therapeutic trial of cyclosporine in myasthenia gravis. Ann N Y Acad Sci, 1993. 681: p. 539-51.
  20. Hart, I.K., Sathasivam, S., and Sharshar, T., Immunosuppressive agents for myasthenia gravis. Cochrane database of systematic reviews, 2007(4).
  21. Stieglbauer, K., Pichler, R., and Topakian, R., 10-year-outcomes after rituximab for myasthenia gravis: Efficacy, safety, costs of inhospital care, and impact on childbearing potential. Journal of the Neurological Sciences, 2017. 375: p. 241-244.
  22. Hehir, M.K., Hobson-Webb, L.D., Benatar, M., et al., Rituximab as treatment for anti-muscle-specific kinase myasthenia gravis. Neurology, 2017. 89(10): p. 1069-1077.
  23. Kusner, L.L. and Kaminski, H.J., The role of complement in experimental autoimmune myasthenia gravis. Annals of the New York Academy of Sciences, 2012. 1274(1): p. 127-132.
  24. Howard, J.F., Jr., Utsugisawa, K., Benatar, M., et al., Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. The Lancet Neurology, 2017. 16(12): p. 976-986.
  25. Shemin, D., Briggs, D., and Greenan, M., Complications of therapeutic plasma exchange: A prospective study of 1,727 procedures. Journal of Clinical Apheresis, 2007. 22(5): p. 270-276.
  26. Luzi, G., Bongiorno, F., Paparo Barbaro, S., et al., Intravenous IgG: biological modulating molecules. J Biol Regul Homeost Agents, 2009. 23(1): p. 1-9.